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AFTERBODY TESIPERATURES, PRESSURES , AND AERODYNAMIC 

CHAFlACTERISTICS RESULTING FROM EXTENSION OF SPEED-BRAKE 

CONFIGURATIONS INTO THE EXHAUST JETS OF A 

By Charles E. Mercer, Leland B. Salters, Jr., 
and Francis J. Capone 

An investigation of the e f fec ts  of twin hot j e t s  on the afterbody 
surface temperatures, pressures, and aerodynamic character is t ics  of an 
attack-type airplane model equipped with speed brakes used as thrus t  
spoilers has been conducted i n  the Langley 16-foot transonic tunnel. 
The model was tested a t  Mach numbers of 0.60 t o  0.90 over an angle-of- 
attack range of -kO t o  8'. The j e t  total-pressure r a t i o  was varied 
from 1.0 ( j e t  o f f )  t o  about 4.7. Nine speed-brake configurations were 
tested. Hydrogen peroxide turbo je't -engine simulators were used t o  
supply the hot- je t  exhaust. 

The slotted-brake and the perforated-brake configurations provided 
the best protection t o  the fuselage from the heating ef fec ts  of the jets. 
By relocating the j e t s  further outboard, the temperature problem was 
solved, but apparently the brake retracted drag was increased s l ight ly.  

INTRODUCTION 

Interference ef fec ts  between turbojet  exhausts and the airplane 
fuselage have been a problem i n  a i r c ra f t  design for  years and have been 
the subject of considerable research e f fo r t s  as indicated i n  refer- 
ences 1, 2, and 3. In  t h i s  connection in t e res t  has been shown i n  the 
heating ef fec ts  of hot- je t  exhausts on afterbody surface temperatures 
as evidenced i n  references 4 and 3. The present investigation i s  



concerned primarily with one aspect of the heating problem, namely, the 
heating of the downstream fuselage surfaces by hot- je t  exhausts impinging 
upon thrus t  spoilers which extend into the j e t  exhaust stream. The i n i -  
t i a l  par t  of the investigation was the t e s t  of the basic model config- 
uration with and without speed brakes used as thrus t  spoilers as 
reported i n  reference 6. The basic configuration consisted of a twin- 
jet ,  attack-type-airplane model with canted ta i lp ipes  exhausting hot 
j e t s  along the sides of the fuselage. 

In order t o  reduce excessive temperatures which are  produced on 
surfaces adjacent t o  the speed brakes and which occurred on the basic 
configuration, a ser ies  of modifications were made t o  the speed Brake. 
Provision was also made f o r  relocating the j e t s  l a t e r a l l y  t o  increase 
the clearance between j e t s  and afterbody. The resu l t s  of these modi- 
f icat ions on the temperatures, pressures, and aerodynamic forces and 
moments are reported as  the second phase of the investigation. 

The investigation was conducted a t  free-stream Mach numbers from 
0.60 t o  0.90, j e t  total-pressure ra t ios  from 1.0 ( j e t  o f f )  t o  4.7, 
angles of attack from -4O t o  8O, angles of s ides l ip  of 0' and 5O, and 
horizontal- ta i l  deflections of O0 and -5'. The Reynolds number, based 
on the mean aerodynamic chord of 1.10 feet ,  was approximately 5 X 106. 

SYMBOLS 

D 
f'uselage-tail drag coefficient,  - 

LS 
incremental drag coefficient due t o  extending speed brakes, 

C ~ ,  brakes extended ' C ~ ,  basic 

J incremental drag coefficient due t o  j e t  operation, 

C ~ ,  j e t s  on ' C ~ ,  j e t s  off 

L fuselage-tail  l i f t  coefficient, - 
LS 

&L, B incremental l i f t  coefficient due t o  extending speed brakes, 
C ~ ,  brake s extended ' C ~ ,  basic 

A c ~ ,  J incremental l i f t  coefficient due t o  j e t  operation, 
C ~ ,  j e t s  on ' C ~ ,  j e t s  off 

c;, % fuselage-tail  pitching-moment coefficient, - 
r2)(*h' : F' ' '" 



A%,B incremental pitching-moment coefficient due to extending 
'peed bralres, 'm, brakes extended - 'm, basic 

&,j incremental pitching-moment coefficient due to jet opera- 
tion, %, jets on - Cm, jets off 

&,6 incremental pitching-moment coefficient due to horizontal- 
tail deflection, - 'a, 41=-50 'm, Shz0c 

pressure coefficient, 
pz - Po0 

&o 

mean aerodynamic chord of basic wing, 13.22 in. 

fuselage -tail drag, lb 

diameter of jet exit, 1.81 in. 

fiselage-tail lift, lb 

free-stream Mach number 

fuselage-tail pitching moment about 0.2265;, in-lb 

local static pressure, lb/sq ft 

free-stream static pressure, lb/sq ft 

jet total pressure, lb/sq fl 

average jet total pressure, lb/sq ft 

free-stream dynamic pressure, lb/sq ft 

radial distance from base of rake, in. 

basic wing area, 5.2 sq ft 

jet total temperature, OF 

f ree-stream total temperature, OF 



measured model surface temperature, OF 

longitudinal distance from j e t  -exit center ( s ta t ion  36.50), 
posit ive rearward, in. 

l a t e r a l  distance from model plane of symmetry, posit ive t o  
r ight  looking forward, in. 

ve r t i ca l  distance from wing chord plane, posit ive upward, in. 

angle of attack of fuselage reference l ine,  deg 

angle of s idesl ip  of plane of symmetry, deg 

horizontal- ta i l  deflection from fuselage reference l ine,  deg 

brake deflection angle, deg 

Wind Tunnel 

This investigation was conducted i n  the Langley &foot transonic 
tunnel which i s  a single-return atmospheric wind tunnelwi.th an octag- 
onal, s lo t ted  t e s t  section. It has a speed range from Mach number 0.20 
t o  about 1.10 and the Mach number i s  varied over t h i s  range by variation 
of tunnel drive power. 

Model and Support System 

The model, which was constructed of s t e e l  except fo r  the p l a s t i c  
forebody, was supported a t  the wing t i p s  by means of a bifurcate s t ing  
as shown i n  figures 1, 2, and 3. This method of model suspension was 
chosen instead of the usual tail-support method i n  order t o  prevent 
interference between the j e t  exhausts and the sting. The wing was 
fixed r ig id ly  t o  the support booms and was ,  therefore, par t  of the sup- 
port  system. In order t o  permit the fuselage-tail  component t o  def lect  
the six-component strain-gage balance, a clearance gap, f i l l e d  with 
f lex ib le  rubber seal, was maintained between the body and wing as  shown 
i n  figure 2. The model body was attached t o  the wing through a six- 
component strain-gage balance. Hydrogen peroxide turbojet  simulators 
were used t o  furnish the hot-jet  exhausts a t  a temperature of approxi- 
mately 1, 360° F as described i n  reference 7. The turbo j e t  simulators 
were attached d i rec t ly  t o  the wing; therefore, the d i rec t  j e t  th rus t  



was not measured but only the  jet- interference e f f e c t s  on the  fuselage- 
t a i l  forces  and moments were measured. The j e t  nozzles were canted 
outward and down as  shown i n  f igure  4. The nine speed-brake configura- 
t ions  t e s t ed  are  shown i n  f igures  5' and 6. Speed-brake wells were 
simulated by recessing the  fuselage jus t  downstream of the  hinge l i ne .  
The hor izontal  t a i l  was designed f o r  variable incidence. 

TESTS 

In  t h i s  investigation,  nine speed-brake configurations were t e s t ed  
at  60' def lect ion and the  perforated brake was t e s t ed  a t  the  addi t ional  
def lect ions  of 0O and 30'. The t e s t s  included two l a t e r a l  locations of 
the  je ts ,  a Mach number range from 0.60 t o  0.90, angles of a t tack from 
-4' t o  80, j e t  total-pressure r a t i o  from 1.0 ( j e t  o f f )  t o  4.7? angles 
of s i de s l i p  of 0' and 5O,  and hor izon ta l - t a i l  def lect ions  of 0' and -5' 
and with the  hor izontal  t a i l  removed. The Reynolds number, based on 
the  wing mean aerodynamic chord of 1.10 fee t ,  w a s  approximately 5 X 106. 

Forces and moments on the  fuse lage- ta i l  combination were measured 
by a six-component strain-gage balance a s  shown i n  f igure  3. Total 
pressures and temperatures were measured ins ide  both j e t s  a t  locat ions  
indicated i n  f igure  4. This f igure  a l so  shows the  location of the  
s ingle  o r i f i c e  i n s t a l l ed  i n  each e x i t  t o  measure engine base pressures. 
S t a t i c  -pressure o r i f  i ces  were located on the  ex te rna l  surf  aces of the  
r i gh t  s ide  of the  model and thermocouples were located on the  l e f t  s ide 
a t  places indicated i n  f igure  7 and t ab l e s  I and 11. Most of the  thermo- 
couples were located on a 0.031-inch-thick s t e e l  panel designed f o r  
rapid  temperature response. Thermocouples were a l so  i n s t a l l ed  on rakes 
a s  indicated i n  f igure  7(b) .  

Pressures were transmitted t o  f a s t  response e l e c t r i c a l  pressure 
transducers by means of tubing routed through the  support system. The 
e l e c t r i c a l  s ignals  from the  pressure transducers, thermocouples, and 
strain-gage balance were transmitted t o  recording oscillographs. 

DATA REDUCTION AND ACCURACIES 

The oscil lograph records were read manually and the  data  were con- 
verted t o  punch cards f o r  reduction t o  standard coef f ic ien t  form by 



machine computation. Eased on the accuracy of the instruments, calibra- 
tions, and readout procedures, the data presented are estimated t o  be 
accurate t o  within the following limits: 

a, deg . . . . . . . . . . . . . . . . . . . . . . . . . . . .  k0.10 
c , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10.02 

A t  a given data point a s l igh t  variation i n  j e t  pressure r a t i o  
occurred between the r ight  and l e f t  simulator. Therefore, .pressure 
r a t io s  of the l e f t  j e t  were used f o r  the temperature data and those of 
the r ight  j e t  f o r  the pressure data. The average pressure r a t i o  of 
both j e t s  was used f o r  a l l  force data. 

The ef fec t  of the support-system interference i s  not known but i s  
believed t o  be small. Restraint due t o  the rubber seals  was accounted 
f o r  i n  the model calibration. These factors  should have even l e s s  
influence on the incremental data which are  the information of primary 
interest .  

RESULTS AND DISCUSSION 

Effect of Various Speed-Brake Configurations 

on Body Surface Temperatures 

The variat ion i n  fuselage surface temperatures with j e t  pressure 
r a t i o  a t  Mach numbers 0.60 and 0.90 f o r  various speed-brake configura- 
t ions  i s  shown i n  figure 8. Fuselage surface temperatures while the 
j e t  was not operating (Pt,J/P, = 1) are included i n  the figures as  a 
basis  f o r  comparison with the temperatures while the j e t  was operating 
at various pressure ratios;  the difference i n  the temperatures was the 
e f fec ts  of the j e t  on fuselage surface temperatures. It may be noted 
tha t  the jet-off temperatures are higher f o r  M = 0.90 than f o r  
M = 0.60 by some 30° t o  400. This i s  caused by the differences i n  
free-stream stagnation temperatures between Mach number 0.60 and 0.90. 
The duration of the data points was made of sufficient length t o  insure 
reasonable temperature s tab i l iza t ion  and, as previously pointed out, 



the moael s ~ i n  w a s  made extremely th in  on those par t s  where the tem- 
peratures were measured I n  order t o  decrease time lag caused by heat 
sink. The geometry of the various speed-brake configurations i s  
shown i n  figures 5 and 6. 

Solid brakes.- Fuselage surface temperatures obtained with the 
basic speed-brake configuration (the sol id  brakes, basic nozzle posi - 
tion, 60° brake deflection, 0' angle of attack, O0 sideslip,  and 0' t a i l  
deflection) are  shown i n  figure 8(a). 

The second thermocouple of row 10 located immediately downstream 
of the hinge l ine  indicated the highest temperatures f o r  a l l  Mach num- 
bers and pressure r a t io s  and attained a maximum temperature of about 360° 
above free-stream stagnation temperature. It should be noted here tha t  
t h i s  temperature was  much lower than tha t  f o r  the so l id  brake as  reported 
i n  reference 6 which indicated temperatures from 6000 t o  7000 above 
free-stream stagnation temperatures. The configurations were ident ica l  
except f o r  the speed-brake wells which were simulated only on the pres- 
en t  configuration. The simulation of the speed-brake well, therefore, 
a l te red  the flow pattern i n  such a way t h a t  body surface temperatures 
were reduced. 

J e t  deflectors.- The effect of the addition of the j e t  deflectors 
on the surface temperatures i s  shown i n  figure 8(b). The j e t  deflectors 
i l l u s t r a t ed  i n  figures 5(b) and 6(b) consist  of a 30' wedge placed a t  
each j e t  e x i t  t o  def lect  the j e t  away from the body. The j e t  deflectors 
were very effective i n  lowering body temperatures a t  Mach number 0.60 
but l e s s  effect ive a t  Mach number 0.90. A detrimental side e f fec t  which 
was not indicated on the curves was the rapid r i s e  i n  in te rna l  tempera- 
tures  of the model when j e t  deflectors were used. This was caused by 
the deflection of some of the hot gases of the j e t  back up into the 
model through the clearance gap between the nozzle and fairing. 

Solid brakes with scoop.- The ef fec t  of the addition of the scoop 
t o  the sol id  brake i s  shown i n  figure 8(c) .  In  general, the scoop 
lowered the body temperatures on the order of 50°. The scoop tended 
t o  redirect  some of the exhaust gases away from the body and acted as 
a p a r t i a l  shield t o  the surfaces behind the scoop. 

Slotted brake.- Of a l l  the configurations investigated, the s lo t ted  
brake (f ig .  8(d) ) was the most effect ive i n  protecting the body surfaces 
from the influence of the hot jet .  For a l l  p rac t ica l  purposes, the 
heating of the body was negligible i n  t h i s  case. 

Perforated brake.- The influence of the perforated brake on body 
temperatures i s  shown i n  figure 8(e) .  A s  compared t o  the sol id  brake, 
the perforated brake shows considerable improvement both i n  general 



temperature decrease of a l l  thermocouples and a decided decrease i n  
those which were highest  f o r  the  so l id  brake such as  those near the  
brake-fuselage juncture. This configuration i s  probably second t o  the  
s l o t t ed  brake i n  overa l l  effectiveness i n  protecting the  afterbody from 
the  heating e f f ec t s  of the  j e t s .  

Vent f i l l e r s .  - The so l i d  vent f i l l e r  of f igure  8 ( f ) ,  the  perforated 
vent f i l l e r  of f igure  and the  t rapezoidal  vent f i l l e r  of f igure  8 (h)  
produced detrimental e f f ec t s  when added t o  the  o r ig ina l  perforated brake 
i n  t h a t  they increased body surface temperatures. Each of them produced 
temperature increases of approximately 200' F near the  brake-fuselage L 
juncture. 1 

Perforated brake with hinged f lap . -  The addit ion of the  hinged 
3 
2 

f l a p  t o  the  perforated brake did  not change the  temperature pa t te rn  of 8 
the  body s ign i f ican t ly  a s  i s  shown by a comparison of f igures  8 ( e )  
and 8 ( i ) .  The s l i g h t  temperature decrease noted on some of the  curves 
i n  f igure  8 ( i )  was p a r t i a l l y  caused by t he  differences i n  free-stream 
stagnation temperatures. These temperature differences were from 6 O  F 
t o  1 8 O  F. 

Influence of Various Speed-Brake Configurations on the  

Stagnation Temperatures i n  the  Brake Well 

Since a knowledge of t he  environmental temperature d i s t r ibu t ion  
of the  brake actuator  mechanism i s  important t o  the  airplane designer, 
rake stagnation temperatures behind the  various speed brakes are shown 
i n  f igure  9 f o r  Mach numbers 0.60 and 0.90. The thermocouple rake 
(rake 2) w a s  attached t o  the  model a t  the  approximate center of the  
brake wel l  so t h a t  measured temperatures represented those t o  which the  
brake actuator  mechanism would be exposed. The reference plane of the  
rake ( r /d j  = 0 )  was a t  the  in te r sec t ion  of the  rake and the  ins ide  sur-  

face of the  well. A p a r t i a l  view of the  rake may be seen i n  f igure  6 (c ) .  
A sketch of t he  rake i n s t a l l a t i o n  i s  shown i n  f igure  7(b).  It may be 
noted i n  f igure  9 t h a t  the  s l o t t ed  brake afforded the  g rea tes t  protec- 
t i o n  from the heat  of the  j e t  out  t o  r /d j  = 1 .2  but the  l e a s t  protec- 

t i o n  of any brake outboard of r/dj = 1.2. Evidently, i t s  ac t ion was 

t o  def lec t  the  whole j e t  outward from the  body which exposed the  out- 
board pa r t s  t o  the  fill b l a s t  of the  j e t  while protecting inboard pa r t s  
from the d i r e c t  action of the  j e t .  This a l so  seemed t o  be the  case f o r  
a l l  t he  perforated brakes. The only brakes which offered any measure 
of protection t o  the  outboard pa r t s  are  the  solid-brake configurations 
and they offered only p a r t i a l  protection. The e f f e c t  of Mach number on 
the  temperature d i s t r i bu t i on  was small. 



Body Pressure Distr ibutions 

The pressure d i s t r i bu t i on  on the  body f o r  various speed-brake con- 
f igurat ions  with and without j e t  operation i s  shown i n  f igure  10. The 
locations of the  s ta t ic-pressure  o r i f i c e s  are  indicated i n  f igure  7 
and table  I. 

The pressure d i s t r ibu t ion  on t he  j e t  shroud, forward of the  j e t  
ex i t ,  was not g rea t ly  affected by the  speed-brake configuration but was 
increased s l i g h t l y  i n  a pos i t ive  di rect ion by an increase i n  Mach number 
and a l so  by jet-on operation a s  compared t o  jet-off  operation. Some 
indicat ion of the  pressure drop across the  brake may be obtained from 
a comparison of the  pressures of the  two o r i f i c e s  of row 2, one located 
immediately upstream and the other  immediately downstream of the  brake. 
The magnitude of the  pressure differences and the  close proximity of the  
o r i f i c e  locat ions  r e l a t i ve  t o  one another indicate  a quite sudden and 
usua l ly  a large  pressure drop. 

Although the  magnitude of the  pressures varied with brake configu- 
ra t ion,  Mach number, and j e t  operating conditions, the  pressures i n  the  
brake well  (rows 4 and 5 )  maintained the  same general d i s t r ibu t ion  pat-  
tern .  The o r i f i c e  on t he  r ea r  wal l  of the brake wel l  (row 4) always 
indicated a considerably g rea te r  pressure ( i n  the  posi t ive  di rect ion)  
than the  other  o r i f i ces .  The difference i n  the  pressures act ing on the  
forward and rearward facing walls  of the  brake wel l  provides an indica- 
t i o n  of the  magnitude of the  pressure drag produced by t he  brake well. 
Apparently, a s ign i f ican t  pa r t  of the  t o t a l  drag of the  brake configura- 
t i o n  occurs i n  the  brake wel l  i t s e l f .  

The o r i f i c e s  on t he  body a f t  of the  brake well  maintained pressures 
close t o  free-stream s t a t i c  pressure except those near the  edge of the  
brake well. The close proximity of these o r i f i c e s  t o  the sharp edge of 
the  brake well  probably was the  cause of t h e i r  constantly indicat ing 
pressures more negative than the  others.  

Jet-Induced Incremental Aerodynamic Coefficients 

The e f f e c t  of average pressure r a t i o  on the  jet-induced incremental 
aerodynamic coef f ic ien t s  i s  shown i n  f igure  11 f o r  Mach number 0.60 
and 0.90. The incremental drag coef f ic ien t s  increased f a i r l y  uniformly 
with pressure r a t i o .  The jet-induced drag of the  s l o t t e d  brakes was 
noticeably lower than t h a t  of the  o ther  configurations which produced 
near ly  i den t i ca l  drag increments with increasing pressure r a t i o .  

The incremental pitching-moment coeff ic ients  generally increased 
ra ther  consis tent ly  f o r  a l l  configurations with an increase i n  pressure 
r a t i o  while the  incremental l i f t - coe f f i c i en t  var ia t ion  changed considerably 



with a change i n  configuration. An increase i n  Mach number decreased 
the pitching-moment coefficient and increased the l i f t  coefficient f a i r l y  
consistently f o r  a l l  configurations. 

Extended Investigation of Perforated Brake 

Although the s lo t ted  brakes provided the greatest  protection t o  
the fuselage surfaces from the heating ef fec ts  of the hot je ts ,  the 
perforated brakes were considered more prac t ica l  from the s t ruc tura l  
viewpoint. Therefore, additional information was obtained with the 
perforated speed brakes t o  determine the effects  of angle of attack, 
brake deflection angle, and model s idesl ip  angle on the surface tem- 
peratures and aerodynamic characteristics.  Surface temperatures a t  
various angles of attack are shown i n  figure 12 f o r  maximum jet-pressure- 
r a t io  conditions and the e f fec t  of pressure r a t i o  i s  shown i n  figure 13 
f o r  an angle of attack of 8 O .  Basic temperature data f o r  the speed 
brakes retracted are presented i n  figure 14 which can be compared with 
fl = 0' resu l t s  f o r  the brakes extended 30' and 60' i n  figure 15. With 
the brakes retracted (f ig .  14), temperatures of over 300' F were obtained 
on the rear  portion of the fuselage, whereas deflecting the brakes 30° 
reduced most of the surface temperatures t o  near ambient and a fur ther  
extension t o  60' resulted i n  the high (over 400° F) loca l  temperatures 
previously noted near the fuselage-brake extension. Changing the model 
s idesl ip  angle from 0' t o  5' produced temperature increases of up t o  50' 
on the downstream side of the fuselage fo r  both the 30' and 60' brake 
deflections. (see f ig .  15. ) 

The ef fec ts  of the perforated-brake deflection on the body-tail 
aerodynamic character is t ics  with power off i s  shown i n  figure 16. The 
effectiveness of the perforated brake as a speed brake i s  indicated by 
the drag increase of 0.025 t o  0.030. The pitching-moment coefficient 
was increased up t o  0.018 i n  the posit ive direction but the l i f t  coef- 
f i c i en t  was not changed significantly.  

Some indication of the effectiveness of the perforated brake as a 
thrus t  spoiler i s  shown i n  figure 17 with the j e t  operating. J e t  impinge- 
ment on the brakes increased the drag coefficient from 100 t o  200 percent 
of the jet-off incremental value of figure 16. Horizontal-tail-control 
effectiveness decreased with increase i n  j e t  total-pressure r a t io s  as 
indicated i n  figure 18 with losses up t o  15 percent of the jet-off values. 

Effects of Relocating J e t  & i t s  i n  a More Outboard Position 

Moving the j e t  ex i t s  outboard 0.22-jet diameters reduced the fuse- 
lage surface temperatures markedly f o r  the sol id  brakes retracted as  



indicated by a comparison of figures 14 and 19. In fact ,  the tempera- 
tures  of figure 19 do not vary from ambient temperatures significantly,  
except towards the aft  portion of the fuselage ( a f t  of about x/dj = 6). 
There was also a marked reduction i n  body surface temperatures f o r  
extended speed brakes as shown by a comparison of figures 8 and 20. It 
may be s tated t h a t  moving the j e t s  outboard essent ial ly  eliminated the 
fuselage-skin-temperature problem f o r  a l l  p rac t ica l  purposes. 

Repositioning the nozzles did not influence the power-off aerody- 
namic character is t ics  great ly  (fig. 21) although the drag appeared t o  
increase slightly.  With outboard nozzles and sol id  brakes retracted 
drag i s  reduced by j e t  operation as indicated i n  figure 22. Jet-inQuced 
incremental drag of the perforated brake was not s ignif icant ly affected 
by nozzle position as indicated by a comparison of M = 0.90 data of 
figures 17(a) and 23. 

CONCLUSIONS 

An investigation of afterbody temperatures, pressures, and aerody- 
namic character is t ics  resul t ing from extension of speed brakes into the 
exhaust j e t s  of a twin-engine attack-type a i r c r a f t  model indicate the 
following conclusions: 

1. The s lot ted brakes provided the greatest  protection t o  the fuse- 
lage surfaces from the heating ef fec ts  of the hot jets.  

2. The sol id  brake ser ies  offered more protection t o  the brake- 
actuator mechanism than the perforated-brake series.  

3. With speed brakes extended, the simulation of the brake well 
decreased body surf ace temperatures. 

4. Reducing the perforated-brake deflection angle from 60° t o  30' 
eliminated the body- surf ace -temperature problem. 

5. Relocating the j e t s  i n  a more outboard posit ion essent ial ly  
eliminated the body-heating problem but apparently the brake retracted 
drag was increased s l ight ly.  

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Field, Va. , January 20, 1961. 
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TABLE I.- COORDINATES OF PRESSURE-ORIFICE MCATION 

9 3  z 1 

in. Row 

Ease 
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station, 

in. 

Y> 
in. / 

56.65 
36.65 

-1.40 
-1.40 

-2.70 
2.70 

0. oB 
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Bit fair ing - basic nozzle position 

A 

B 

c 
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-0.50 
-. 55 -. 65 

-. 25 
-. 65 

-2.15 
-1.85 

-2.60 
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-. 88 
-. 50 

-. 50 
o 

-. 50 
o 

-. 50 

34.20 
54.90 
35.60 

35.60 
36.50 
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36.50 
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Exit fair ings - outboard nozzle position 
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5.35 
5- 25 

3. 30 
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-. 50 
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Fuselage 
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5- 70 
5.60 

3. 45 
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4.60 
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7.02 
8.84 
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8.84 

1.77 
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1 

2 
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-1.15 
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4 
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45.15 

41.25 

2.01 
2.62 
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TABLE 11. - COORDINATES OF TEERWOUPLE LOCATION 

Row 
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Y, 
in. 

38.20 
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Figure 3 . -  Geometrical details of the model and support system. All 
dimensions are in inches unless otherwise noted. 
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Figure 5. - Continued. 
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Figure 7. - Concluded. 
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Figure 8. - Variation of fuselage surf ace temperatures with j e t  pressure 
r a t i o  fo r  various speed-brake configurations. A l l  brakes deflected 
60°; basic nozzle position; a = OO; B = 8; = OO. 
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Figure 8. - Continued. 
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Figure 8. - Continued. 
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Figure 8. - Continued. 
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Figure 8. - Continued. 
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Figure 12.- Variation of fuselage temperatures with angle of attack 
and Mach number a t  maximum je t  pressure r a t io  fo r  the 60' per- 
forated brake. Basic nozzle position; @ = 0'; 6, = 0'. 
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Figure 13.- Fuselage surface temperatures a t  various j e t  pressure ra t ios  
with 60' perforated brakes installed.  Basic nozzle 
Q = 0.90; u = 8'; p = oO; s, = oO. 
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Figure 14. - Influence of j e t  pressure r a t i o  on fuselage temperatures 
with sol id  and perforated brakes retracted. Basic nozzle position; 
& = 0.90; u = 8'; p = oO; S, = oO. 
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Figure 15.- Effect of s ides l ip  angle on fuselage temperatures a t  various 
j e t  pressure r a t io s  fo r  30' and 60° deflections of the perforated 
speed brake. Basic nozzle position; % = 0.90; a = 8O; % = oO. 



Longitudinal position, x/dj 

(b) T = 60'. 

Figure 15. - Concluded. 
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- 
Longitudinal pos i t ion ,  x/dj 

Figure 19.- Effect of j e t  p r e s s w  r a t i o  on fuselage temperatures with 
the nozzles i n  the outboard position and sol id  brakes retracted; 
ha, = 0.90; a = 8O; 8 = oO; S, = oO. 







Mach number, Ma, 

(a)  L i f t  coefficient.  

Figure 21.- Influence of nozzle l a t e r a l  position on the power-off 
fuselage-tai l  l i f t ,  pitching-moment, and drag coefficients with 
so l id  brakes retracted. P = 0'; = 0'. 
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(b) Pitching-moment coefficient. 

Figure 21. - Continued. 
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(c) Drag coefficient. 

Figure 21. - Concluded. 
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Figure 23.- Aerodynamic j e t  e f fec ts  with nozzles i n  the outboard position 
0 and sol id  o r  perforated brakes extended 60'; a = 0'; j3 = 0 ; % = 0'. 






